The Cell Rejuvenation Atlas
Researchers here report on a novel omics analysis of changes in cell biochemistry produced by various approaches to slowing or reversing aspects of aging, giving rise to what they call a cell rejuvenation atlas. The researchers used their atlas to improve the understanding of how a few of the many regulators of cell behavior produce benefits in the context of aging, and suggest that this approach may yield further insights into targets for drug development to at least slow the progression of aging.
Current rejuvenation strategies, which range from calorie restriction to in vivo partial reprogramming, only improve a few specific cellular processes. In addition, the molecular mechanisms underlying these approaches are largely unknown, which hinders the design of more holistic cellular rejuvenation strategies. To address this issue, we developed SINGULAR (Single-cell RNA-seq Investigation of Rejuvenation Agents and Longevity), a cell rejuvenation atlas that provides a unified systems biology analysis of diverse rejuvenation strategies across multiple organs at single-cell resolution. In particular, we leverage network biology approaches to characterize and compare the effects of each strategy at the level of intracellular signaling, cell-cell communication, and transcriptional regulation.
Our approach successfully identified several previously known age-related transcription factors (TFs). For instance, we found Arntl to be a master regulator in rejuvenation, corroborating its earlier identification as the TF with the most significant age-related decline in activity in at least one prior analysis. However, only three other matching TFs were identified, with the sign of TF activity changes varying substantially by cell type. This suggests notable differences between transcriptional changes associated with aging and the regulators of rejuvenation. It also uncovered previously undocumented mediators of rejuvenation interventions. Moreover, in cases where the transcriptional mediators are known, our analysis provides novel insights.
For example, while the AP-1 complex formed by Fos and Jun has been described to regulate diverse cell functions, and in particular the inflammaging response, our analysis further demonstrates that different subunits and cofactors serve as master regulators of the response to specific interventions. In light of our findings and a recent study that highlighted an up-regulation of the Jun-Fos dimer expression, which is accompanied by increasing inflammation, it is plausible that AP-1 dimers composed of other subunits are responsible for inducing anti-aging effects.
Apart from the AP-1 complex, our analysis revealed the transcriptional stress response TFs NFE2L2 and MAF as master regulators of certain rejuvenation interventions in different cell types. Indeed, MAF and NFE2L2 have been shown to dimerize and regulate gene expression programs that protect against oxidative stress, which are lost with age. Moreover, over-expressing MAF has been shown to rescue these protective expression programs and preserve fitness in an animal aging model. Conversely, the reduced activity of NFE2L2 leads to increased cellular senescence and inflammation.