A Short Review of Effects of Lifestyle Choice on Epigenetic Age
As researchers here note, there is ample evidence to suggest that lifestyle choices known to correlate with modestly longer life expectancy in epidemiological studies also correlate with lower measures of biological age. These include epigenetic clocks and combinations of physiological measures such as phenotypic age. None of this is terribly surprising. When it is clear that exercise improves traditional measures of health and life expectancy, only a poor measure of biological age would not also be improved.
Biological age is a concept that uses bio-physiological parameters to account for individual heterogeneity in the biological processes driving aging and aims to enhance the prediction of age-related clinical conditions compared to chronological age. Although engaging in healthy lifestyle behaviors has been linked to a lower mortality risk and a reduced incidence of chronic diseases, it remains unclear to what extent these health benefits result from slowing the pace of the biological aging process. This short review summarized how modifiable lifestyle factors - including diet, physical activity, smoking, alcohol consumption, and the aggregate of multiple healthy behaviors - were associated with established estimates of biological age based on clinical or cellular/molecular markers, including Klemera-Doubal Method biological age, homeostatic dysregulation, phenotypic age, DNA methylation age, and telomere length.
Individuals who engage in a healthy lifestyle may exhibit a slower pace of biological aging, as their DNA methylation profile and physiological biomarkers are in a healthier state that typically indicates lower risks of mortality and age-related diseases. However, most studies linking lifestyle factors and biological aging are cross-sectional designs, making it difficult to establish causation. Furthermore, it is worth noting that previous research investigating lifestyle factors and biological aging was commonly obtained from specific US cohorts, such as NHANES and the Sister study, probably due to the difficulty of having both biological age measures and comprehensive lifestyle data in other large cohorts. More evidence derived from diverse populations needs to be included.
So far, the best advice to everything, seems to be diet and exercise!
Just had me DNA methylation tested.
I'm 9 years younger than my chrono age. I've taken 1000 mg BHT for 45 years and not much else.