Senescent Cells Appear Involved in Graft-Versus-Host Disease

Now that increasing attention is given to senescent cells in the biology of aging, their involvement in a wide range of conditions has been uncovered. The transient creation of senescent cells is a part of wound healing, a process that is harmed by the growing burden of lingering senescent cells that occurs with advancing age, and the inability of the aged immune system to remove these cells in a timely fashion. Given the role in wound healing, is perhaps not surprising to find senescent cells involved in graft-versus-host disease following surgical transplantation of tissue. Senolytic therapies may prove to be useful here, as they have in animal studies of many other conditions.

Graft-versus-host disease (GVHD) is a life-threatening systemic complication of allogeneic hematopoietic stem cell transplantation (HSCT) characterized by dysregulation of T cell and B cell activation and function, scleroderma-like features, and multi-organ pathology. The treatment of cGVHD is limited to the management of symptoms and long-term use of immunosuppressive therapy, which underscores the need for developing novel treatment approaches.

Notably, there is a striking similarity between cytokines/chemokines responsible for multi-organ damage in cGVHD and pro-inflammatory factors, immune modulators, and growth factors secreted by senescent cells upon the acquisition of senescence-associated secretory phenotype (SASP). In this pilot study, we questioned the involvement of senescent cell-derived factors in the pathogenesis of cGVHD triggered upon allogeneic transplantation in an irradiated host. Using a murine model that recapitulates sclerodermatous cGVHD, we investigated the therapeutic efficacy of a senolytic combination of dasatinib and quercetin (DQ) administered after 10 days of allogeneic transplantation and given every 7 days for 35 days.

Treatment with DQ resulted in a significant improvement in several physical and tissue-specific features, such as alopecia and earlobe thickness, associated with cGVHD pathogenesis in allograft recipients. DQ also mitigated cGVHD-associated changes in the peripheral T cell pool and serum levels of SASP-like cytokines, such as IL-4, IL-6, and IL-8Rα. Our results support the involvement of senescent cells in the pathogenesis of cGVHD and provide a rationale for the use of DQ, a clinically approved senolytic approach, as a potential therapeutic strategy.

Link: https://doi.org/10.3390/biology12050647

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.