A View of Recent Thought on the Amyloid Cascade Hypothesis of Alzheimer's Disease

Biochemistry is complex, and particularly so in the brain. The amyloid cascade hypothesis of Alzheimer's disease essentially states that slow aggregation of amyloid-β over years causes the onset of later and much more severe stages of Alzheimer's disease, meaning the chronic inflammation in brain tissue and tau aggregation that kills neurons. The hypothesis has so far survived the failure of amyloid-β clearance via immunotherapy to produce patient benefits, as well as the evidence for a subset of older individuals to exhibit high levels of amyloid-β without progressing to Alzheimer's disease. Researchers continue to explore and modify their hypotheses regarding how exactly amyloid-β leads to later issues.

At present, the research community appears to be leaning towards the idea that once the later stages of inflammation and tau aggregation take hold, they form a self-sustaining feedback loop of increasing pathology, and amyloid-β becomes largely irrelevant after that point. In this case early use of immunotherapies should reduce disease risk, but trials focused on prevention will take a long time to run to completion. It is still possible that the most visible amyloid-β aggregation outside cells is only a side-effect of chronic infection or other processes that generate inflammation and pathology. In that case, targeting amyloid-β will not help. In either case, therapies that target the mechanisms of inflammation or tau aggregation will be the next focus. There is a good chance that senolytic treatments to remove senescent cells in the brain will help, for example.

PET Firms Up Amyloid Cascade: Plaques, Inflammation, Tangles

In the Alzheimer's cascade hypothesis, plaques unleash tangles; alas, where neuroinflammation fits in has been hazy. Now, the first study to combine imaging of microglial activation with amyloid and tau PET in the human brain places neuroinflammation squarely in between the two. Researchers report PET findings from 108 adults who range from cognitively healthy to Alzheimer's disease (AD) dementia. Across this cohort, the regional distribution of microglial activation mirrored Braak staging, and correlated with tangle load. Moreover, the extent of microglial activation predicted the spread of tangles into later Braak regions, suggesting it drove this pathology. Notably, the relationship between neuroinflammation and tangles only occurred in the presence of amyloid plaques, and all three pathologies were required for cognitive decline.

"Amyloid potentiates microglial activation to drive tau propagation in the brain. The data suggest neuroinflammation should be included in biological definitions of AD. This is a very compelling study, and certainly advances our understanding of the crosstalk between microglial activation, amyloid, and tau burden in the clinical context."

PET imaging studies have consistently shown that as plaques spread into cortex, tangles break out of the medial temporal lobe to rampage across the brain, attacking cognition as they go. But the mechanistic connection between the pathologies remained mysterious. The medial temporal lobe contains little amyloid, making a direct interaction unlikely. Animal and in vitro studies hinted that microglia might be the missing link. In mice, activation of the NLRP3 inflammasome in microglia caused the cells to spew cytokines that triggered tau phosphorylation in neurons. Further, microglia isolated from AD brains contained tau seeds, which the cells released into the culture medium. The data implied that microglia phagocytose aggregated neuronal tau present in aging brain, then try but fail to digest it, and instead end up strewing it across the brain.

Comments

Given the already massive costs to the world of Alzheimer's disease I find it a bit strange that the NIH is not already finding a large trial of senolytics against the disease.

Posted by: jimofoz at September 13th, 2021 2:37 PM

senolytics for sure will help since they work on the whole body and will improve many systems. Therefore, even if the root cause is not addressed the body will have a bid better repair/ cleanup systems to fight the progression of the disease. Probably just slightly slowing it down. It seems that calorie restriction has similar effects, so if both approaches are combined they might postpone the progress by a few years, which is already more than any other state of the art treatment can achieve.

Posted by: Cuberat at September 13th, 2021 4:13 PM

Cuberat, I think you answered my question but I'll check with you anyway. Are different senolytics specific to certain body parts such as brain or heart or skin- or do they all work the same, meaning system wide.

Posted by: august33 at September 13th, 2021 9:02 PM

@august33
for now we (at least AFAIK) don't know for sure but by their nature the small molecule drugs affect the whole body. Different tissues, however, might get quite a different response. The first generation senolytics such as D+Q are quite blunt and hammer on left and right.

Ultimately , i think , we will discover either tissue/cell type specific senolytics or we will have a target delivery system.

But even if they don't remove even a single senescent cell from and around the brain they might still bring improvement to the lymphatic, cardio vascular , renal, liver and other systems. That would help the brain at least marginally.

This one looks like more plausible bet than the plaque removing therapies.

Posted by: Cuberat at September 14th, 2021 3:10 PM

Cholesterol drives Alzheimer's plaque formation
https://www.sciencedaily.com/releases/2021/09/210914100118.htm

Date: September 14, 2021
Source: University of Virginia Health System
Summary: The new findings offer important insights into how and why the plaques form and may explain why genes associated with cholesterol have been linked to increased risk for Alzheimer's.

Posted by: Jones at September 15th, 2021 2:33 AM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.