Differences in Exosome MicroRNA Content Following Exercise in Sedentary versus Fit Older People
Researchers here note one example of the many differences that exist between good and poor fitness in older people. The response to exercise is materially different between fit and sedentary individuals at all levels of cellular metabolism. The microRNA contents of exosomes, a class of extracellular vesicle that carries signals between cells, is one of these countless differences. It is possible that this sort of exploratory study may lead to therapies based on delivery of manufactured exosomes containing specific microRNAs, and there is certainly a growing industry of companies working on exosome manufacture to support such an effort.
Exercise has multi-systemic benefits and attenuates the physiological impairments associated with aging. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. However, the impact of regular exercise and acute exercise on circulating exosomal microRNAs (exomiRs) in older populations remains unknown. In the present study, we analyzed circulating exomiR expression in endurance-trained elderly men (n = 5) and age-matched sedentary males (n = 5) at baseline (Pre), immediately after a forty minute bout of aerobic exercise on a cycle ergometer (Post), and three hours after this acute exercise (3hPost).
Following the isolation and enrichment of exosomes from plasma, exosome-enriched preparations were characterized and exomiR levels were determined by sequencing. The effect of regular exercise on circulating exomiRs was assessed by comparing the baseline expression levels in the trained and sedentary groups. The effect of acute exercise was determined by comparing baseline and post-training expression levels in each group. Regular exercise resulted in significantly increased baseline expression of three exomiRs (miR-486-5p, miR-215-5p, miR-941) and decreased expression of one exomiR (miR-151b). Acute exercise altered circulating exomiR expression in both groups. However, exomiRs regulated by acute exercise in the trained group (7 miRNAs at Post and 8 at 3hPost) were distinct from those in the sedentary group (9 at Post and 4 at 3hPost).
Pathway analysis prediction and reported target validation experiments revealed that the majority of exercise-regulated exomiRs are targeting genes that are related to IGF-1 signaling, a pathway involved in exercise-induced muscle and cardiac hypertrophy. The immediately post-acute exercise exomiR signature in the trained group correlates with activation of IGF-1 signaling, whereas in the sedentary group it is associated with inhibition of IGF-1 signaling. While further validation is needed, including measurements of IGF-1/IGF-1 signaling in blood or skeletal muscle, our results suggest that training status may counteract age-related anabolic resistance by modulating circulating exomiR profiles both at baseline and in response to acute exercise.
Effects of acute exercise at the genetic level as described in this study has been massively overlooked in the past. Numerous recent reports on the positive effects of cardio and intense cardio-exercise on improved brain function (neural effects) and limiting progression of Alzheimer's has given this area some attention that may change this henceforth.
More studies such as this one relating to INF-1 signaling as well as increasing understanding of the influence of intense exercise on mitochondrial function, and other cellular pathways should allow for identification of those molecular mechanisms and potential therapies. Livestrong.com has had some good articles on effects of intense exercise on mitochondrial function, however, more genetic-based and scientific studies are needed before results can contribute to anti-aging strategies that may be as profound as earlier described "Heat shock" type mechanisms in microbes. Hopefully this is start!