Electrostimulation Improves Working Memory in Old People
Researchers here report on a demonstration in which they used electrostimulation to improve the working memory of old people to put it on a par with young people. It will be interesting to watch the investigation into the underlying mechanisms in the years ahead, though I expect it will be quite difficult to work backwards from such a non-invasive stimulus focused on brain waves, and into the underlying biochemistry of the brain.
Researchers have demonstrated that electrostimulation can improve the working memory of people in their 70s so that their performance on memory tasks is indistinguishable from that of 20-year-olds. The research targets working memory - the part of the mind where consciousness lives, the part that is active whenever we make decisions, reason, recall our grocery lists, and (hopefully) remember where we left our keys. Working memory starts to decline in our late 20s and early 30s, as certain areas of the brain gradually become disconnected and uncoordinated. By the time we reach our 60s and 70s, these neural circuits have deteriorated enough that many of us experience noticeable cognitive difficulties, even in the absence of dementias like Alzheimer's disease.
Researchers asked a group of people in their 20s and a group in their 60s and 70s to perform a series of memory tasks that required them to view an image, and then, after a brief pause, to identify whether a second image was slightly different from the original. At baseline, the young adults were much more accurate at this, significantly outperforming the older group. However, when the older adults received 25 minutes of mild stimulation delivered through scalp electrodes and personalized to their individual brain circuits, the difference between the two groups vanished. Even more encouraging? That memory boost lasted at least to the end of the 50-minute time window after stimulation - the point at which the experiment ended.
Coupling occurs when different types of brain rhythms coordinate with one another, and it helps us process and store working memories. Slow, low-frequency rhythms - theta rhythms - dance in the front of your brain, acting like the conductors of an orchestra. They reach back to faster, high-frequency rhythms called gamma rhythms, which are generated in the region of the brain that processes the world around us. But when the theta rhythms lose the ability to connect with those gamma rhythms to monitor them, maintain them, and instruct them, then the melodies within the brain begin to disintegrate and our memories lose their sharpness. Meanwhile, synchronization, when theta rhythms from different areas of the brain synchronize with one another, allows separate brain areas to communicate with one another. This process serves as the glue for a memory, combining individual sensory details to create one coherent recollection. As we age, our theta rhythms become less synchronized and the fabric of our memories starts to fray.
The present work suggests that by using electrical stimulation, we can reestablish these pathways that tend to go awry as we age, improving our ability to recall our experiences by restoring the flow of information within the brain. And it's not just older adults that stand to benefit from this technique: it shows promise for younger people as well. In the study, 14 of the young-adult participants performed poorly on the memory tasks despite their age - so the researchers called them back to stimulate their brains too. "We showed that the poor performers who were much younger, in their 20s, could also benefit from the same exact kind of stimulation. We could boost their working memory even though they weren't in their 60s or 70s. Coupling and synchronization exist on a continuum. On one end of the spectrum, someone with an incredible memory may be excellent at both synchronizing and coupling, whereas somebody with Alzheimer's disease would probably struggle significantly with both. Others lie between these two extremes-for instance, you might be a weak coupler but a strong synchronizer, or vice versa."
Link: https://www.bu.edu/research/articles/electrostimulation-can-improve-working-memory/
Let me put on my thinking hat... ;)
About 30 years ago there was hemi sync fashion to sunshine the brainwaves using special frequencies at each year.
As a crude analogy, if senecent cells are harmful in small numbers, here we might have soon desynchronizing noise signals that are generated by say senecent structures in the brain. The stimulation alignes the signals and somehow silences the noise or tunes the brain to ignite that noise. Or just tunes it and with the she the brain loses did timing capacity ..
It is all very interesting, and if replicated, we will see "thinking hats" in many offices...
Are that brain stimulations the same for all partecipants ? Or each of them had EEG electrodes on the scalp to check his own wave pattern and then accordingly an adeguate stimulus was given ?
In the former case really a simple and powerfull tool for boost performance in older people.
In the latter we must wait some time before we can see applications.
Gamma wave entrainment can also be effected through pulsed light and sound exposure at 40 Hz, and has been found to reduce amyloid and tau pathology mouse AD models:
https://medicalxpress.com/news/2019-03-brain-alzheimer-symptoms.html
"In 2016, Tsai and her colleagues first reported the beneficial effects of restoring gamma oscillations in the brains of mice that are genetically predisposed to develop Alzheimer's symptoms. In that study, the researchers used light flickering at 40 hertz, delivered for one hour a day. They found that this treatment reduced levels of beta amyloid plaques and another Alzheimer's-related pathogenic marker, phosphorylated tau protein. The treatment also stimulated the activity of debris-clearing immune cells known as microglia."
Elderly driver: "What seems to be the problem officer?"
Policeman: "May I please have your license and registration while we run a check?"
(ten minute wait)
Policeman returns: "While I was observing you, I noticed that you weren't wearing your stim cap, which is a requirement stated on your license."
Elderly driver: "I'm sorry officer, it slipped my mind".
Off topic - "Engineers tap DNA to create 'lifelike' machines"
The designs are still primitive, but they showed a new route to create dynamic machines from biomolecules. We are at a first step of building lifelike robots by artificial metabolism," said Shogo Hamada, lecturer and research associate in the Luo lab, and lead and co-corresponding author of the paper. "Even from a simple design, we were able to create sophisticated behaviors like racing. Artificial metabolism could open a new frontier in robotics."
https://www.sciencedaily.com/releases/2019/04/190411145103.htm