CellAge: Another Group Entering the Senescent Cell Clearance Fray
The research and development community is certainly showing a great deal of interest in senescent cell clearance these days: this is one of the first working approaches to rejuvenation via reversal of a fundamental cause of aging, and it is very gratifying to see it start to take off following a series of fairly robust positive results on health and life span in mouse studies. Things are going so well that the SENS Research Foundation has of late been able to step back from this field and focus attention and resources on other parts of the rejuvenation biotechnology portfolio. For senescent cell research, things are becoming busier with each passing quarter. Even setting aside the groups that we won't hear about until they are much further along, meaning the more adventurous folk inside Big Pharma entities who have convinced their bosses to put resources into evaluating the present catalog of apoptosis-inducing drugs, there is a brace of dedicated senescent cell clearance startup companies: Oisin Biotechnologies, UNITY Biotechnology, SIWA Therapeutics, and at this point probably one or two others in the works that I'm as yet unfamiliar with. On the non-profit side, there is the Major Mouse Testing Program, and now the newcomers at CellAge:
Imagine a future where people can enjoy their 80s in the same way they enjoyed their 20s. A future where people no longer suffer from age-related diseases. A future where we all are given more time to spend with our loved ones. We are working to make this future your future. CellAge is a dynamic startup aiming to increase human healthspan and reduce the incidence of age-related diseases by helping human body destroy aged cells. Our breakthrough technology concept harvests the promises from synthetic biology and recent findings in ageing research to deliver novel products and therapies. Our products will help to advance ageing research even further and help people live healthier lives.
Our society as a whole is getting older and as a consequence incidences of age-related diseases, such as cancer, cardiovascular diseases and osteoarthritis, are increasing at an alarming rate. Furthermore, detrimental effects of aging not only decreases the quality of life in old age but is an ever-expanding and unsustainable drain on private and national resources for health and social care. Despite these enormous problems, there are very few effective products which address these and related challenges. Recently, a new target, which could help tackle many of the mentioned problems, has been validated by a number of in vivo and in vitro studies. It has been shown that senescent cells (cells which have ceased to replicate due to stress or replicative capacity exhaustion) are linked to a number of diseases and their removal increases mouse healthspan (period of life free of serious diseases). The concept of our technology is to increase patient's health span and life expectancy by removing aged cells, also known as senescent cells, by use of combinatorially targeted senolytic gene therapy. Large number of biomarkers used in our targeting will not only allow removal of significant proportions of senescent cells but also has low off-target effects, sparing other healthy cells which sometimes closely resemble aged cells.
One of the great things about the non-profit side of the house is that the people involved feel far less constrained to temper their vision when speaking in public. This field of research is absolutely all about increasing life span as well as health span, for all that this part of the goal tends to become less visible and less vocal the more money that arrives to support it. The more that people in the scientific and biotechnology communities talk about this, the more it legitimizes oingoing work on ending aging in the eyes of those who still have doubts. Rhetoric and tone are important! They set the scene for future growth and fundraising in this industry. The CellAge principals orbit in the same portion of the scientific community as the Major Mouse Testing Program scientist Alexandra Stolzing, who is at present running a senescent cell clearance study that we all helped to crowdfund. You might take a look at this coauthored review paper from earlier this year on the topic of senescent cell biomarkers for an idea as to the CellAge areas of interest, which clearly include improving on the present methods used to identify and categorize senescent cells.
Biomarkers to identify and isolate senescent cells
Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan.
To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells.
....and there is Everon Bioscience
True; Everon Biosciences has been around for a number of years, like the precursor company to UNITY, making little material progress across that time, and now seem to be reinvigorated by the present environment.
Many are researching senescence these days and that's great, but how is AGE research going?
@RS: The AGE clearance research is pretty much the same as it was last time I talked about it in detail at the start of the year, just moving incrementally from there - it is dominated by the search for viable drug candidates, and obtaining more conclusive proof that glucosepane is the only target we should care about.
https://www.fightaging.org/archives/2016/01/the-present-state-of-progress-towards-clearing-glucosepane-cross-links-a-contributing-cause-of-degenerative-aging/
The relevant big news this year was the additional support for that effort provided by Michael Greve's pledge of millions for SENS, which definitely helps.
https://www.fightaging.org/archives/2016/07/michael-greve-pledges-10-million-to-sens-rejuvenation-research-and-development/
Thanks, RepleniSENS, ApoptoSENS and GlycoSENS are the most interesting for people between 35-50 because they can make you feel and look younger.
AmyloSENS and LysoSENS gets interesting after 50.