A Measure of Just How Beneficial Clearing Cross-Links Might be for the Old
Hypertension, increased blood pressure with age, is caused by stiffening of blood vessels. That stiffening is in turn caused by some combination of cross-linking, cellular senescence, calcification, and inflammation. Cross-linking is probably the largest contribution, but until methods of clearing cross-links are created it will be hard to say for sure. Persistent cross-links are formed when sugary compounds, the vast majority of them based on glucosepane, link together molecules in the extracellular matrix, limiting their range of movement. This causes a loss of elasticity in tissues like skin and blood vessels, and that in turn leads to hypertension, and then everything caused by hypertension: detrimental remodeling of heart tissue, damage to brain and kidneys as small vessels and delicate structures are destroyed, and so forth. The higher the blood pressure the worse the long-term prognosis. This research measures just how many lives might be saved through the development of therapies to clear the cross-links that produce arterial stiffness, something that, sad to say, very few groups outside the SENS Research Foundation are working on:
Intensive treatment to lower systolic blood pressure to below 120 would save more than 100,000 lives per year in the United States. Two thirds of the lives saved would be men and two thirds would be aged 75 or older, according to the study. Current guidelines recommend keeping systolic blood pressure below 140 mm Hg. "When the treatment goal was lowered to a maximum of 120 mm HG, there was a huge reduction in mortality. Few other medical interventions have such a large effect." To determine whether intensive treatment to lower systolic blood pressure could alter mortality, the researchers applied findings from the Systolic Blood Pressure Intervention Trial (SPRINT) to the U.S. adult population.
The SPRINT trial, which included more than 9,350 adults ages 50 and older who had high blood pressure and were at high risk for cardiovascular disease. The SPRINT trial found there was a 27 percent reduction in mortality from all causes when systolic blood pressure was lowered to below 120 mm Hg, compared to the standard care of lowering blood pressure to below 140 mm Hg. While saving lives, an intensive blood pressure regimen also would cause serious side effects. The study estimated that approximately 55,500 more episodes of low blood pressure, 33,300 more episodes of fainting and 44,400 additional electrolyte disorders would occur annually with implementation of intensive systolic blood pressure lowering in U.S. adults who meet SPRINT criteria. Most of these effects would not be expected to have lasting consequences and would be reversible by lowering blood pressure medications.
High blood pressure, or hypertension, is a leading risk factor for heart disease, stroke, kidney failure and other health problems. An estimated 1 in 3 people in the United States has high blood pressure. In the SPRINT study, patients who were treated to achieve a standard target of less than 140 mm Hg received an average of two different blood pressure medications. The group treated to achieve a target of less than 120 mm Hg received an average of three medications. Using data from the National Health and Nutrition Examination Survey, researchers determined that more than 18.1 million American adults met the criteria of patients enrolled in the SPRINT trial. They estimated that, among these 18.1 million adults, fully implementing an intensive regimen to lower systolic blood pressure below 120 mm Hg would prevent approximately 107,500 deaths per year.
Are there any prospects for development of therapies that remove calsification?
@Ikaria: It is unclear as to the degree to which (a) calcification is secondary to other damage, and (b) the degree to which it will fix itself if that other damage is removed. So in a world in which SENS is implemented, younger people may never need to think about calcification, but older people may well need some form of therapy to fix the calcification that has already occurred.
You might look at this recent research which suggests some directions:
https://www.fightaging.org/archives/2016/09/a-cellular-cause-for-calcification-of-blood-vessels/
Aside from that, forms of chelation might be the approach to take, but I'm not sure that they are presently all that effective for calcium deposits.
Msc can reduce calcification.