Inhibiting Wnt Signaling to Treat Osteoarthritis
Wnt signaling has long been investigated in connection with the processes of adult regeneration and embryonic development. This latest news notes progress towards a class of therapies that inhibit the Wnt pathway, potentially producing regeneration in adult tissues where it would not normally occur, or slowing damage caused by inappropriate growth in tissues where the Wnt pathway is overactive in aging.
Researchers have unveiled pre-clinical and clinical research that demonstrated successful modulation of the Wnt pathway for potential applications in regenerative medicine. They have developed an injectable investigational drug that inhibits the Wnt pathway, causing endogenous stem cells to regenerate knee cartilage in animals.Osteoarthritic joints are characterized by degradation of the articular cartilage, which provides the cushioning between bones, and by bony protrusions called osteophytes, which interfere with function and exacerbate the pain associated with osteoarthritis. An overactive Wnt pathway in the affected joint causes the formation of more (spurious) bone instead of (healthy) cartilage, leading to pain, loss of function, stiffness, and deformity.
Clinical data indicate that the small molecule inhibitor of the Wnt pathway SM04690 may slow joint space narrowing and possibly increase joint space in the knee. Clinicians generally perceive an increase in joint space as evidence of preservation or regrowth of cartilage. The researchers recently concluded a 24 week placebo-controlled, double-blind, randomized Phase I clinical trial, studying the safety and preliminary efficacy of SM04690 in patients with moderate to severe osteoarthritis of the knee. The results also suggested that a single injection with SM04690 appeared to be safe and potentially effective in improving function and reducing pain for patients with osteoarthritis of the knee. Subsequently, researchers began enrollment in an approximately 400-patient Phase II clinical trial.
Link: http://www.eurekalert.org/pub_releases/2015-11/rbsc-sam110915.php