Towards the Production of New Photoreceptor Cells In Situ
The evolution of cell therapies will most likely be towards treatments that alter cell type and behavior in place, drawing from the existing pool of cells and changing them to suit the needs of the patient. Given sufficient control over cell activities and cell state old cells might be repaired and entire organs could be regenerated through this approach. Present efforts in tissue engineering and transplants are a stepping stone to this more sophisticated future of regenerative medicine. Here is an early example of this trend underway:
Recent success in restoring visual function through photoreceptor replacement in mouse models of photoreceptor degeneration intensifies the need to generate or regenerate photoreceptor cells for the ultimate goal of using cell replacement therapy for blindness caused by photoreceptor degeneration. Current research on deriving new photoreceptors for replacement, as regenerative medicine in general, focuses on the use of embryonic stem cells and induced pluripotent stem (iPS) cells to generate transplantable cells. Nonetheless, naturally occurring regeneration, such as wound healing, involves awakening cells at or near a wound site to produce new cells needed to heal the wound.Here we discuss the possibility of tweaking an ocular tissue, the retinal pigment epithelium (RPE), to produce photoreceptor cells in situ in the eye. Unlike the neural retina, the RPE in adult mammals maintains cell proliferation capability. Furthermore, progeny cells from RPE proliferation may differentiate into cells other than RPE. The combination of proliferation and plasticity opens a question of whether they could be channeled by a regulatory gene with pro-photoreceptor activity towards photoreceptor production. Studies using embryonic chick and transgenic mouse showed that indeed photoreceptor-like cells were produced in culture and in vivo in the eye using gene-directed reprogramming of RPE cells, supporting the feasibility of using the RPE as a convenient source of new photoreceptor cells for in situ retinal repair without involving cell transplantation.