Considering Cerebrospinal Fluid Flow Disruption as a Contributing Cause of Alzheimer's Disease

Alzheimer's disease is associated with buildup of amyloid-β in the brain, aggregates formed of misfolded proteins. The amount of amyloid present at any given time is dynamic, however, which has long suggested that Alzheimer's is in part caused by a slow decline in the mechanisms responsible for clearing amyloid from the cerebrospinal fluid. You might look at investigations of the choroid plexus, for example, which acts as a filtration mechanism for cerebrospinal fluid. Here a researcher theorizes on the possible role of disruptions in the flow of cerebrospinal fluid in Alzheimer's disease, another way in which clearance of amyloid might be impacted with the progression of aging:

Plaques and tangles may be manifestations of a more substantial underlying cause of Alzheimer's disease (AD). Disease-related changes in the clearance of amyloid-β (Aβ) and other metabolites suggest this cause may involve cerebrospinal fluid (CSF) flow through the interstitial spaces of the brain, including an archaic route through the olfactory system that predates neocortical expansion by three hundred million years. This olfactory CSF conduit (OCC) runs from the medial temporal lobe (MTL) along the lateral olfactory stria, through the olfactory trigone, and down the olfactory tract to the olfactory bulb, where CSF seeps through the cribriform plate to the nasal submucosa.

Olfactory dysfunction is common in AD and could be related to alterations in CSF flow along the OCC. Further, reductions in OCC flow may impact CSF hydrodynamics upstream in the MTL and basal forebrain, resulting in less efficient Aβ removal from those areas - among the first affected by neuritic plaques in AD. Factors that reduce CSF drainage across the cribriform plate and slow the clearance of metabolite-laden CSF could include aging-related bone changes, head trauma, inflammation of the nasal epithelium, and toxins that affect olfactory neuron survival and renewal, as well as vascular effects related to diabetes, obesity, and atherosclerosis - all of which have been linked to AD risk. Problems with CSF-mediated clearance could also provide a link between these seemingly disparate factors and familial AD mutations that induce plaque and tangle formation. I hypothesize that disruptions of CSF flow across the cribriform plate are important early events in AD, and I propose that restoring this flow will enhance the drainage of Aβ oligomers and other metabolites from the MTL.

Link: http://dx.doi.org/10.3233/JAD-130659

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.