Identifying Genetic Changes that Reduce Stem Cell Aging
Here researchers note a genetic alteration that reduces age-related changes in one stem cell population: "Upon aging, the number of hematopoietic stem cells (HSCs) in the bone marrow increases while their repopulation potential declines. Moreover, aged HSCs exhibit lineage bias in reconstitution experiments with an inclination towards myeloid at the expense of lymphoid potential. The adaptor protein Lnk is an important negative regulator of HSC homeostasis, as Lnk deficiency is associated with a 10-fold increase in HSC numbers in young mice. However, the age-related increase in functional HSC numbers found in wild type (WT) HSCs was not observed in Lnk-deficient animals. Importantly, HSCs from aged Lnk null mice possess greatly enhanced self-renewal capacity and diminished exhaustion, as evidenced by serial transplant experiments. In addition, Lnk deficiency ameliorates the aging-associated lineage bias. Transcriptome analysis revealed that WT and Lnk-deficient HSCs share many aging-related changes in gene expression patterns. Nonetheless, Lnk null HSCs displayed altered expression of components in select signaling pathways with potential involvement in HSC self-renewal and aging. Taken together, these results suggest that loss of Lnk partially mitigates age-related HSC alterations."
This appears to be another instance of programmed aging, not due to damage.
Lnk protein may be involved in other aging processes:
"Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk"
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000881