Mitochondria, Hormesis, and Lifespan
While we're on the subject of mitochondrial processes leading to signals that change life span: "An unequivocal demonstration that mitochondria are important for lifespan comes from studies with the nematode Caenorhabditis elegans. Mutations in mitochondrial proteins such as ISP-1 and NUO-6, which function directly in mitochondrial electron transport, lead to a dramatic increase in the lifespan of this organism. One theory proposes that toxicity of mitochondrial reactive oxygen species (ROS) is the cause of aging and predicts that the generation of the ROS superoxide should be low in these mutants. Here we have measured superoxide generation in these mutants and found that it is in fact elevated, rather than reduced. Furthermore, we found that this elevation is necessary and sufficient for longevity, as it is abolished by antioxidants and induced by mild treatment with oxidants. This suggests that superoxide can act as a signal triggering cellular changes that attenuate the effects of aging. This idea suggests a new model for the well-documented correlation between ROS and the aged phenotype. We propose that a gradual increase of molecular damage during aging triggers a concurrent, gradually intensifying, protective superoxide response."