Children of Long-Lived Parents Have Better Immune Systems
The immune system declines greatly with aging, and poor immune response is an important component of age-related frailty: old people become vulnerable to infections that the young can shrug off with ease. So we might expect to see that long-lived people have better immune systems, and that whatever underlying mechanisms cause that difference are to some degree inherited.
People may reach the upper limits of the human life span at least partly because they have maintained more appropriate immune function, avoiding changes to immunity termed "immunosenescence." Exceptionally long-lived people may be enriched for genes that contribute to their longevity, some of which may bear on immune function. Centenarian offspring would be expected to inherit some of these, which might be reflected in their resistance to immunosenescence, and contribute to their potential longevity. We have tested this hypothesis by comparing centenarian offspring with age-matched controls. We report differences in the numbers and proportions of both CD4+ and CD8+ early- and late-differentiated T cells, as well as potentially senescent CD8+ T cells, suggesting that the adaptive T-cell arm of the immune system is more "youthful" in centenarian offspring than controls. This might reflect a superior ability to mount effective responses against newly encountered antigens and thus contribute to better protection against infection and to greater longevity.
The goal of future medicine is to make inherited differences of this nature irrelevant. There are a number of promising approaches that may remove much of the age-related decline of immune function: regrow the atrophied thymus, where immune cells are cultured; create new immune cells in the clinic and infuse them regularly into older people; destroy the population of over-specialized memory cells that exist in the elderly, thus freeing up space for effective immune cells that can combat new threats.