Unpublished Reader's Digest Interview on Aging and Longevity
Over at In Search of Enlightenment you'll find an unpublished interview where the questions somewhat illustrate the point that most people don't look much beyond trivial matters when it comes to aging and longevity. Biotechnology like SENS and similar research projects are given no thought at all in most quarters, and even amongst advocates many favor the snail's pace path of trying to slow aging rather than working to repair its root causes to reverse it. This all means that there is much yet to accomplish in advocacy and education.
The field of research known as biogerontology, which studies the biology of aging, is a truly fascinating, though often misunderstood, area of scientific research. In 2011 the genome of the naked-mole rat was sequenced. This rodent is only the size of a mouse, and one might wonder what the significance of sequencing its genome could possibly be. But the naked-mole rate is the longest living rodent, it has a maximum lifespan exceeding 30 years and an exceptional resistance to cancer. Understanding the biology of this species could help unlock the mystery of healthy aging. A variety of experiments on fruit flies, mice and other species have demonstrated that the rate of aging can be manipulated, either by calorie restriction or by activating particular genes. Such research could eventually lead to the development of a drug that safely mimics the effects of caloric restriction (which delays the onset of disease) or actives the "longevity genes" that help protect against the diseases of late life.The lion's share of funding for medical research is spent on disease research, such as research on cancer, heart disease or Alzheimer's disease. This approach, which I call "negative biology", assumes that the most important question to answer is "what causes disease?". Unfortunately this is a severely limited approach, especially for older populations. Even if you cured all 200+ forms of cancer (and we have not yet eliminated even just one cancer despite investing enormous sums of money for decades now), one of the other diseases of aging would quickly replace cancer as the leading cause of death because most people in late life are vulnerable to multiple diseases. So "positive biology" takes a different intellectual starting point. It assumes that the puzzles of exemplar health are just as important to understand as the development of disease. How can some (very rare) humans live over a century of disease-free life? Understanding these exemplar examples of health might prove to be more significant than trying to understand, treat and cure every specific disease of late life.
Link: http://colinfarrelly.blogspot.com/2012/12/readers-digest-interview-on-aging-and.html