A Look at the Institute for BioNanotechnology in Medicine
From Fast Company: "The mice in the video flickering on his colleague's computer screen were moving their legs. Their back feet trailed behind them from time to time, but the fact that they were walking at all was astounding. Only a few weeks earlier, they'd been paralyzed from the waist down. Then Stupp's team at Northwestern University injected them with made-to-order molecules. Now the mice were trying to run around their cage. ... Those mice were the first living glimpse of the future that Stupp is hoping to accelerate in his role as the director of the Institute for BioNanotechnology in Medicine at Northwestern. It's a future in which molecular self-assembly - where researchers direct molecules to spontaneously combine into ordered structures - will help the body heal itself. ... It wasn't until 1995 that one of his nanotechnology experiments steered him onto an entirely new scientific course. He was trying to make molecules called rodcoils line up side by side to create a large polymer sheet with one side shiny and the other sticky, properties that might make the sheet useful for industrial applications. But something unexpected happened. Instead of forming a single thin membrane, the rodcoils coalesced into trillions of tiny individual structures that looked like mushrooms. Stupp initially wrote off the result as a failure, but he quickly realized that the mushroom-shaped nanoparticles might have a host of advantages. ... What if he could inject the nanomolecules into the bloodstream so they could serve as microscopic vehicles to deliver therapeutic compounds? Even better, what if he could modify the nanomolecules so that they would attract the body's own healing compounds to an injured area, kick-starting the repair process without introducing any foreign cells at all? The 'mushroom' paper Stupp published in 1997 attracted lots of attention, and Northwestern lured the rising star to its materials-science program in 1999. The very next year, Stupp founded IBNAM, the lab he hoped would bring his interdisciplinary ideas to fruition."