Girk3 Downregulation Improves Bone Mass in Old Mice

Bone extracellular matrix is constantly remodeled, created by osteoblast cells and removed by osteoclast cells. With age, these activities become unbalanced in favor of osteoclasts. The result is a progressive loss of bone mineral density and ultimately osteoporosis. Approaches to therapy focus on restoring the balance of activity, often by increasing osteoblast activity. The basis for treatment noted here is an example of the type, in which researchers influence the regulation of osteoblast population size to increase bone extracellular matrix deposition.

Osteoporosis and other metabolic bone diseases are prevalent in the aging population. While bone has the capacity to regenerate throughout life, bone formation rates decline with age and contribute to reduced bone density and strength. Identifying mechanisms and pathways that increase bone accrual in adults could prevent fractures and accelerate healing. G protein-gated inwardly rectifying K+ (GIRK) channels are key effectors of G protein-coupled receptor signaling. Girk3 was recently shown to regulate endochondral ossification. Here, we demonstrate that deletion of Girk3 increases bone mass after 18 weeks of age. Male 24-week-old Girk3-/- mice have greater trabecular bone mineral density and bone volume fraction than wildtype (WT) mice.

Osteoblast activity is moderately increased in 24-week-old Girk3-/- mice compared to WT mice. In vitro, Girk3-/- bone marrow stromal cells (BMSCs) are more proliferative than WT BMSCs. Calvarial osteoblasts and BMSCs from Girk3-/- mice are also more osteogenic than WT cells, with altered expression of genes that regulate the wingless-related integration site (Wnt) family. Wnt inhibition via Dickkopf-1 (Dkk1) or β-catenin inhibition via XAV939 prevents enhanced mineralization, but not proliferation, in Girk3-/- BMSCs and slows these processes in WT cells. Finally, selective ablation of Girk3 from osteoblasts and osteocytes is sufficient to increase bone mass and bone strength in male mice at 24 weeks of age. Taken together, these data demonstrate that Girk3 regulates progenitor cell proliferation, osteoblast differentiation, and bone mass accrual in adult male mice.

Link: https://doi.org/10.1093/jbmrpl/ziae108

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.