A Distinct Fungal Gut Mycobiome Found in Long-Lived Individuals

The microbial populations of the gut are influential on health. The balance of these populations changes with age in harmful ways. The fungal component of the gut microbiome can be called the gut mycobiome, distinct from the many bacterial species that are usually the focus of research, but still interacting with the host and still potentially important. It has already been demonstrated that differences in the gut microbiome are exhibited in patients with a number of age-related conditions, such as Alzheimer's disease. Here, researchers show that the population of fungal species in the gut, the mycobiome, is notably different in long-lived individuals. The purpose of all of this research is to find reliable ways to alter the aged gut microbiome to improve health, building upon techniques such as delivery of probiotics in large amounts or fecal microbiota transplantation from young individuals.

Long-lived individuals have been extensively studied as a model to investigate the role of the gut microbiota in aging, but their gut fungi remain almost unexplored. Here, we recruited a community-dwelling cohort of 251 participants (24-108 years, including 47 centenarians) from Guangxi in China to characterize the gut mycobiome signatures. We found gut mycobiome markedly varied during aging and determined aging as a predominant factor driving these variations. For long-lived individuals, core taxa, including Penicillium and Aspergillus, were maintained and Candida enterotype was enriched when compared with old counterparts.

Individuals with this enterotype were more likely to possess Bacteroides enterotype enriched in young and centenarians. Moreover, the drivers from Candida enterotype were positively linked with the bacteria components dominated in Bacteroides enterotype. We also identified potentially beneficial yeasts-enriched features to differentiate long-lived individuals from others. Our findings suggest that the gut mycobiome develops with aging, and long-lived individuals possess unique fungal signatures.

Link: https://doi.org/10.1016/j.isci.2024.110412

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.