Levels of SGDG Lipids in the Brain Change with Age
Researchers here note one aspect of many in the changing landscape of lipids in the aging brain. Like all such discoveries, it is initially hard to say where it stands in the complex web of cause and consequence that is degenerative aging. Aging is made up of many layers of cause and effect, leading from fundamental causes of aging, good targets for therapies that might alleviate a broad range of age-related conditions, to far downstream consequences of consequences of consequences that would have only a narrow, limited positive impact on health if targeted for restoration.
3-sulfogalactosyl diacylglycerols (SGDGs) are a class of lipids, also called fats. Lipids contribute to the structure, development, and function of healthy brains, while badly regulated lipids are linked to aging and diseased brains. However, lipids, unlike genes and proteins, are not well understood and have often been overlooked in aging research. Researchers recently made three discoveries involving SGDGs: In the brain, lipid levels are very different in older mice than in younger mice; all SGDG family members and related lipids change significantly with age; and SGDGs may be regulated by processes that are known to regulate aging.
"SGDGs were first identified in the 1970s, but there were few follow-up studies. These lipids were essentially forgotten and missing from the lipid databases. Nobody knew SGDGs would be changing or regulated in aging, let alone that they have bioactivity and, possibly, be therapeutically targetable." The analysis showed that SGDGs possess anti-inflammatory properties, which could have implications for neurodegenerative disorders and other neurological conditions that involve increased inflammation in the brain. The team also discovered that SGDGs exist in human and primate brains, suggesting that SGDGs may play an important role in animals other than mice. Further research will be required to show if SGDGs contribute to human neuroinflammation.