An Interview with Hanadie Yousef of Juvena Therapeutics

The Life Extension Advocacy Foundation volunteers here interview Hanadie Yousef of Juvena Therapeutics. Her team is mining the secretions of pluripotent stem cells to find factors that can improve regeneration and stem cell activity in older individuals. Juvena represents one small slice of a broad trend in the regenerative medicine community, many teams building on the past decades of work on stem cell transplantation by seeking to understand and manipulate the cell signaling thought to produce benefits in patients undergoing these first generation therapies. In near all such stem cell therapies, the transplanted cells die rapidly rather than integrate into patient tissues, but benefits such as reductions in chronic inflammation and improved regeneration are nonetheless observed, albeit quite unreliably. Using the signals rather than cells as a basis for treatment should, in principle, turn out to be a more controllable, reliable approach.

Can you describe in more detail Juvena's approach to developing protein therapeutics that promote tissue regeneration in the elderly?

We are utilizing the secretome of human embryonic stem cells. We know that human embryonic stem cells have the capability to develop every tissue in the body, an entire human being. I and my colleagues discovered, nearly a decade ago, that by isolating a sub-fraction of the proteins that they themselves secrete and produce in order to signal to stem cells to develop every tissue in the body, concentrating these proteins, and then adding them directly onto old muscle precursor cells isolated from humans over the age of 65, we could enhance their regenerative potential. When we injected this cocktail of proteins into injured old mice, we saw muscle regeneration returned to levels of younger animals, two-month old mice that are like people in their 20s, and this is a cocktail of human proteins.

The way that Juvena Therapeutics is taking this discovery into the clinic is by establishing a very efficient identification, high-throughput screening, and preclinical development pipeline, which has become ever more predictive and accelerated with the use of AI tools in order to identify what proteins in this original cocktail are actually driving the rejuvenation process, which ones are master regulators of signal transduction and key regulatory pathways involved in tissue differentiation and regeneration. By identifying those proteins and their sequences and exactly what they are compositionally, we can then test them individually and in combinations for their ability to promote human muscle precursor cell function and promote tissue regeneration in mouse models of human aging and human diseases.

Why did you choose to focus on muscle cell regeneration?

Interesting fact about muscle: It's the largest internal tissue organ in the body. One of the first hallmarks of aging is the fact that once we hit our 30s, everybody, for the rest of our lives, heads downhill. We're losing muscle strength and mass every year, but it accelerates with every decade so that by the time we're in your 60s, everyone has some form of muscle wasting, some people more severe than others, so severe enough, in fact, that it prevents their daily functions and daily living and can be so severe that they can be clinically diagnosed with the disease of sarcopenia. Because there is now an ICD-10 code for sarcopenia, which was only issued at the end of 2016, meaning it's an age-related disease that has a clinical indication, we can actually make therapies to target it. There's zero FDA approved therapies, so it's a huge unmet need and a huge market.

Excitingly, one of the best experimental models that we have today to really understand how stem cells decline and function with age is the muscle system. Key discoveries made by my former co-thesis advisor, Irina Conboy, and other pioneers in the field, really paved the way for us to understand mechanistically how stem cells decline and function with age in muscle and develop methods to repair and rejuvenate them, so it's a great first tissue to focus on. Juvena will use this as a way to then launch into other tissue types. Laser-like focus on muscle first; once we find the proteins that are secreted by human embryonic stem cells that can drive muscle regeneration, we'll then apply our platform and our technology and our approach to identifying therapeutics, approaching candidates that can act as therapeutics to promote the brain and prevent things like dementia, really targeting regenerative diseases, as well as go after other tissue types, such as the heart, the skin, and other ones that are really affected with age and decline in function in part by loss of stem cell function.

Link: https://www.lifespan.io/news/hanadie-yousef-embryonic-proteins-for-tissue-regeneration/

Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.