Data on the Effects of Follistatin Gene Therapy from BioViva

Back in 2015, Elizabeth Parrish underwent telomerase and follistatin gene therapy as a part of forming the startup BioViva: a human safety trial of one person, made public as a way to push the bounds of the current debate over when we should get started on human testing of these technologies. Personally, I agree that there is too much talk, too much unnecessary caution and hand-wringing, and not enough action. Sooner rather than later is better, especially given the large amount of animal data showing safety. Parrish is to be congratulated for forging ahead.

The latter of these two gene therapies is more interesting to me, as there is much more evidence in animal studies of the safety and effectiveness of either directly suppressing myostatin or enhancing follistatin to suppress myostatin. This has the effect of increasing muscle mass and reducing fat tissue, along the way tuning the operation of metabolism into a healthier mode of operation. It seems to me to be an enhancement that everyone should undergo, based on the evidence to date: a way to improve health and slow the age-related loss of muscle mass and strength. BioViva has now released some more data on the long term effects of the gene therapies, which show increased muscle mass, reduced fat, and improved aspects of metabolism. In a study of one, this should be taken as an anecdote, especially given that these items can all be changed over the longer term to some degree by lifestyle adjustments. The important thing is that safety has been proven, and that there appear to be benefits is just an added incentive to move to the next step of larger studies and availability of therapy via medical tourism. Hopefully the company will find the funding to achieve both of these goals.

In April 2016 BioViva stated that Elizabeth Parrish, CEO, had experienced telomere lengthening in her leukocytes, as a result of an injection of two experimental therapies. These consisted of a myostatin inhibitor to protect against loss of muscle mass with age, and a telomerase inducer to battle stem cell depletion responsible for diverse age-related diseases and infirmities. While the test was designed to establish the first human safety data regarding telomerase induction, in tests conducted by SpectraCell Laboratories, data indicated that her leukocyte telomeres had lengthened by approximately 20 years, from 6.71kb to 7.33kb. Further data will be released later this year. Upon further examination and testing, comparison of Parrish's data prior to the therapy and following the therapy has revealed additional positive changes. MRI scans taken before and after depict a slight increase in muscle size in conjunction with a noticeable reduction in muscle fat content. An over-accumulation of intramuscular fat, also known as 'marbling', is associated with increased insulin resistance, and as such an appropriate reduction may be linked to beneficial metabolic changes, in addition to the improved musculature. The aforementioned patient's total body weight has also not decreased during this period, and as such weight loss is not a confounding variable. The muscle growth achieved post-therapy corresponds with observed improvements in patients with Becker's Muscular Dystrophy, after receipt of myostatin inhibition gene therapy.

Researchers have noted that a significant reduction in fasting glucose was apparent in mice following telomerase gene therapy. The subject's fasting glucose has declined from previous measurements of 94 mg/dL and 86 mg/dL, to a fasting glucose level of 71 mg/dL by August 2016, as measured by Quest Diagnostics. Repeated testing will confirm the implied increase in insulin sensitivity. Previous research has also indicated that telomerase deficiency impairs glucose metabolism and insulin secretion in telomerase deficient mice, which may explain an apparent improvement in metabolic markers. In accordance with an improvement in metabolic health, triglyceride levels have also declined from 140 mg/dL in 2015 prior to the therapy, to 36 mg/dL in February 2016, subsequently rising to 80 and 84 mg/dL in August 2016. While there has been an increase in blood triglyceride content following the February reading, it is still measurably lower than before treatment. Both decreases in fasting glucose and triglycerides can be potentially explained by prior studies, of both telomerase and myostatin. Raised myostatin mRNA seen in type 2 diabetes patients is associated with impaired insulin sensitivity, raising triglyceride levels and low-grade chronic inflammation. Myostatin inhibition in mice has also been shown to reduce triglyceride levels and improve insulin sensitivity.

No negative effects have been reported, and there are no visible detrimental effects in blood analysis thus far; providing tentative evidence of safety in the first human test of BioViva's dual gene therapy strategy.

Link: http://bioviva-science.com/blog/dual-gene-therapy-has-beneficial-effects-on-blood-biomarkers-and-muscle-composition

Comments

I'd love to see BioViva look at myostatin inhibition for cosmetic purposes, too. Isn't loss of muscle mass in the face, not only loss of skin elasticity, a contributor to looking older?

Posted by: NY2LA at November 30th, 2016 12:47 PM

@NY2LA: It would be interesting to know if Liz Parrish's MRI shows any muscle growth in the face, as this is less likely to be affected by lifestyle change.

Posted by: Barbara T. at November 30th, 2016 1:36 PM
Comment Submission

Post a comment; thoughtful, considered opinions are valued. New comments can be edited for a few minutes following submission. Comments incorporating ad hominem attacks, advertising, and other forms of inappropriate behavior are likely to be deleted.

Note that there is a comment feed for those who like to keep up with conversations.