A Small Sample of the Complexity of Hair Follicle Aging
The overt manifestations of the aging of hair follicles, going gray and losing hair, often appear to bother people to a greater degree than the impending failure of their internal organs. In principle a sufficient understanding of the mechanisms of aging should lead to ways to avoid both outcomes. Rejuvenation therapies that repair the cell and tissue damage of aging should do as much for hair as for any other part of the body. Under the hood, however, there is still the matter of the ferocious complexity of cellular biochemistry and its changes with age. A hair follicle is not like a muscle fiber or a glomular unit of the kidney or a portion of a neural network in the brain. These are all made of cells, but completely different in the details of their responses to the damage that is characteristic of aging.
As illustrated by the fact that effective therapies to address hair aging do not yet exist, the research community does not fully understand the ways in which the processes of hair growth and coloration run awry with age. Hair growth is quite complex. It is not a continuous process, but one that proceeds in phases of communication between cells of various types that make up a hair follicle. Different cells do different things at different times and in different locations in the follicle - and this can all be impaired in any number of ways. In response to this sort of challenge, the research community settles into a mode of gathering ever more detailed data, in search of patterns that might lead towards greater understanding and points of intervention.
Hair loss and graying, the earliest visible signs of skin aging, are driven by the functional decline of hair follicle stem cells and their niches. To elucidate the transcriptional mechanisms involved in scalp aging, we conducted a comprehensive analysis of human scalp samples using single-cell RNA sequencing and spatial transcriptomic technologies. Our study profiled the transcriptomes of 57,181 cells from scalp samples obtained from four young, six middle-aged, and one elderly individual. The integrated bioinformatic pipeline included cell clustering, spatial deconvolution, pseudotime trajectory, as well as cell-type specific gene expression, and intercellular communication analysis. An additional 92 volunteers were included, comprising 90 (37 young, 27 middle-aged, and 26 elderly) for trichoscopic examination, one young individual for senescence-associated β-galactosidase (SA-β-gal) staining, and one elderly individual for both MKI67 immunofluorescence and SA-β-gal staining.
This approach led to several key findings: we identified three subtypes of mitotic keratinocytes that localized in the interfollicular epidermis (IFE), outer root sheath (ORS), and hair matrix, with pseudotime trajectory further confirming their transitional stage. Furthermore, in middle-aged scalps, we observed activated activator protein 1 (AP-1) transcription factor complex in keratinocytes, upregulated DCT gene in melanocytes, and decreased bone morphogenetic protein (BMP) and noncanonical wingless/integrated (ncWNT) signaling in dermal papilla (DP)-keratinocytes cross-talk.
In the age-associated analysis of single-cell transcriptomics, AP-1 activation emerged as a hallmark of middle-aged hair follicle and epidermal cells, consistent with its known role in chromatin remodeling and senescence-associated transcriptional reprogramming. The downstream targets of AP-1 - such as MYC, SOCS3, DUSP1, NR4A1, and NFKBIA - form an intricate regulatory network that influences cell cycle progression, inflammatory responses, and stem cell depletion. This coordinated regulation reflects a dynamic cellular strategy in aging skin - balancing stem cell activation and stress adaptation while restraining excessive proliferative and inflammatory signaling to maintain tissue homeostasis. In addition, DCT was upregulated in melanocytes in the middle-age group, suggesting overactive melanin synthesis caused by inflammaging. Future studies leveraging in vivo and in vitro human hair follicle models are essential to elucidate the causal role of this AP-1-centered network and to evaluate whether targeting AP-1 or its downstream pathways could delay stem cell depletion and offer novel therapeutic avenues for age-related hair loss and graying.