Testing the Process of Growing a New Ear
From the Monterey Herald: " Within a Northeast Ohio lab, a hairless mouse is growing an ear from the cells of a Wadsworth, Ohio, preschooler. Dr. William Landis, the G. Stafford Whitby Chair of Polymer Science at the University of Akron, is leading groundbreaking, tissue-engineering research to grow human cartilage - first in the lab, now in animals and, eventually, in patients. His work is part of a fast-developing field that could help millions of patients repair injuries, replace worn body parts or fix birth defects with tissue grown from their own cells in the not-so-distant future. ... Kyle Figuray's parents agreed to be the first area participants and donors of his otherwise useless cartilage. The healthy, friendly 5-year-old was born with a congenital defect that caused the exterior ear and ear canal on his right side to develop improperly. Typically, the malformed ear cartilage is discarded as medical waste after it's removed during the first of three procedures to craft a new ear out of rib. Instead, the tissue removed [was] placed inside a vial and shared with Landis' research team, who carefully cleansed the cells and fed them special nutrients to coax them to proliferate in the lab. A few weeks later, enough cells were available for researchers to 'seed' them onto a biodegradable, biocompatible polymer scaffold. A few days later, the seeded ear scaffold was implanted under the skin of a hairless mouse ... The mouse will be studied over the next year to determine how the cells are behaving and progressing toward normal cartilage. If all goes well, the biodegradable polymer scaffold should disappear, leaving behind only Kyle's cartilage cells in the shape of an ear. The hope is that an affected person's cells someday can be harvested, seeded onto similar polymer scaffolds and implanted under the patient's own skin in the abdomen or back until they grow into replacement tissue. At that point, the new tissue could be removed and used to replace the patient's injured or defective tissue."